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S U M M A R Y
Finite-fault source inversions reveal the spatial complexity of earthquake slip or pre-stress
distribution over the fault surface. The basic assumption of this study is that a stochastic model
can reproduce the variability in amplitude and the long-range correlation of the spatial slip
distribution. In this paper, we compute the stochastic model for the source models of four
earthquakes: the 1979 Imperial Valley, the 1989 Loma Prieta, the 1994 Northridge and 1995
Hyogo-ken Nanbu (Kobe). For each earthquake (except Imperial Valley), we consider both
the dip and strike slip distributions. In each case, we use a 1-D stochastic model. For the four
earthquakes, we show that the average power spectra of the raw, that is, non-interpolated, data
follow a power-law behaviour with scaling exponents that range from 0.78 to 1.71. For the four
earthquakes, we have found that a non-Gaussian probability law, that is, the Lévy law, is better
suited to reproduce the main features of the spatial variability embedded in the slip amplitude
distribution, including the presence and frequency of large fluctuations. Since asperities are
usually defined as regions with large slip values on the fault, the stochastic model will allow
predicting and modelling the spatial distribution of the asperities over the fault surface. The
values of the Lévy parameters differ from one earthquake to the other. Assuming an isotropic
spatial distribution of heterogeneity for the dip and the strike slip of he Northridge earthquake,
we also compute a 2-D stochastic model. The main conclusions reached in the 1-D analysis
remain appropriate for the 2-D model. The results obtained for the four earthquakes suggest
that some features of the slip spatial complexity are universal and can be modelled accordingly.
If this is proven correct, this will imply that the spatial variability and the long-range correlation
of the slip or pre-stress spatial distribution can be described with the help of five parameters:
a scaling exponent controlling the spatial correlation and the four parameters of the Lévy
distribution constraining the spatial variability.
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1 I N T RO D U C T I O N

The source of complexity in earthquakes is not well understood

and still debated (Carlson & Langer 1989; Rice 1993; Madariaga &

Cochard 1994). Like other complex systems observed in nature, the

expectation that the complexity of earthquakes may be due to some

underlying scaling law comes from observations. The foremost ob-

servation in seismology is the Gutenberg-Richter statistics for the

number and magnitude (energy release) of earthquakes (Gutenberg

& Richter 1942). A less well known, but critical, observation is the

roughness of topography of sliding surfaces (fig. 4 in Power et al.
1987). Their basic result shows that over 11 orders of magnitude in

fault surface wavelength—that is from field data to the laboratory—

the power spectrum density of roughness (geometrical complexity)

appears to follow a power law. This suggests that asperities and

barrier are distributed—over a large range of scale—on the fault

surface.

Following early observations of complexity in earthquakes (Wyss

& Brune 1967; Das & Aki 1977; Aki 1979; Day 1982; Boatwright

1984), the complex behaviour of earthquakes has been reported

in almost every article based on inverting near-source data for the

slip or pre-stress distribution of the causative fault (e.g. Hartzell &

Heaton 1986; Beroza & Spudich 1988; Bouchon 1997; Bouchon

et al. 1998a,b; Sekiguchi et al. 2000; Zeng & Chen 2001; Mikumo

et al. 2003; Zhang et al. 2003). In a study of spatial heterogeneity

and friction in the crust, Rivera & Kanamori (2002) concluded that

‘heterogeneity of stress field, and friction in the crust seems to be

the essential feature of the crust, and studies on earthquake rup-

ture dynamics must take these heterogeneities into consideration’.

As elsewhere in physical sciences, efforts to understand complex

622 C© 2006 The Authors

Journal compilation C© 2006 RAS



Stochastic model of slip 623

spatial variability were based on a statistical characterization ap-

proach (Boore & Joyner 1978; Andrews 1980; Von Seggen 1981;

Lomnitz-Adler & Lemus-Diaz 1989; Gusev 1992; Herrero &

Bernard 1994; Oglesby & Day 2002). Most of the models discussed

in the literature are either phenomenological in nature or simply

a guess. While these models may reproduce some qualitative fea-

tures of the ‘heterogeneous’ variability observed in slip or pre-stress

distribution, the model parameters are neither fixed nor validated

through a comparison with the inverted slip data. Mai & Beroza

(2002) went a step further and undertook such a study. Using avail-

able source models, they validated and computed the parameters

of the Von Karman function that they used to model the two-point

statistics of the slip distributions. Guatteri et al. (2003), computed

kinematic, hybrid and dynamic scenarios of ruptures based on syn-

thetic random pre-stress spatial distribution modelled according to

Mai & Beroza (2002). A major finding of Guatteri et al. (2003) was

that the inclusion of variability in the source parameters is funda-

mental to simulate realistic ground motion time series. In a paper

discussing the dynamic inversion and modelling of the 1992 Landers

earthquake, Peyrat et al. (2001) concluded that rupture propagation

is ‘critically determined’ by the pre-stress spatial distribution. These

results suggest that proper quantification of the statistical properties

associated with earthquake source models should go beyond ‘trial

and error’ random modelling of the slip and pre-stress spatial het-

erogeneity.

In a search for a generalized model that characterizes the spatial

distribution of heterogeneity over the fault surface, one has to find

a model that includes and preserves as many features of the ran-

dom or stochastic nature observed in the source models as possible.

Gusev (1992) outlined the procedure to achieve this goal. In princi-

ple, the random model will include one-point statistics (probability

law governing the distribution of the random variables), two-point

statistics (correlation function or spectrum), three-point statistics

and so on. Lavallée & Archuleta (2003) introduced a random model

of slip distribution that was validated and parametrized by comput-

ing the one-point statistics and two-point statistics associated with

the Imperial Valley source model (Archuleta 1984). The results pre-

sented in Lavallée & Archuleta (2003) depart significantly from

previous studies in several aspects. First, the analysis is performed

on non-interpolated data; the effect of interpolation can be profound.

Second, the probability law of the random variables associated with

the slip is non-Gaussian; it is a Lévy law. As shown in this paper,

the usually assumed Gaussian law fails to mimic the basic results

found from the data: namely a Gaussian law does not reproduce the

degree of spatial variation in slip amplitude observed on the fault.

As such, a Gaussian law leads to less heterogeneity in the slip and

the resulting ground motion. The difference between slip hetero-

geneity distributed according to a Lévy law and slip heterogeneity

distributed according to a Gauss law is more obvious when watch-

ing the movie of a spontaneously propagating rupture—the movie

is available at http://www.crustal.ucsb.edu/∼ralph/rupture/.

Empirical observations of the Lévy law have been reported in

seismology. For instance, analyses of the statistical properties of

strong ground motion recorded in the epicentral areas of large earth-

quakes demonstrate that the distribution of peak acceleration is non-

Gaussian (Gusev 1996). The probability density function (PDF) is

characterized by ‘heavy tails’ (a typical signature of Lévy law) and

is better approximated by a Cauchy law (a special case of the Lévy

law) (Tumarkin & Archuleta 1997). These results suggest that ob-

servation of non-Gaussian distribution in the strong ground motion

could have its origin in the spatial variability of the slip over the

fault surface or vice-versa. Furthermore, Kagan (1994) and Marsan

(2005) have shown that the stress increments caused by a fractal

set of earthquakes on subsequent earthquakes is also distributed

according to a Lévy law.

In this paper, we derive the stochastic model for the source models

of four earthquakes: the 1979 Imperial Valley, the 1989 Loma Prieta,

the 1994 Northridge and 1995 Hyogo-ken Nanbu (Kobe). For each

inversion model (except Imperial Valley), we consider both the dip

and strike slip distributions. In each case, we use a 1-D stochastic

model. This choice is not the result of any particular insight or

theoretical motivation but is based on pragmatic considerations.

Usually source models have a larger spatial extension along the

strike direction than along the dip direction. The number of events

(or subfaults) is then larger in the former case, often constraining

the statistical analysis to layers along this direction. Fortunately, the

Northridge inversion is a welcome exception to this rule, and for this

purpose, it is also analysed but assuming a 2-D stochastic model.

Finally in the appendix, we discuss the procedure used to compute

the parameters of the Lévy law.

2 S T O C H A S T I C M O D E L O F

E A RT H Q UA K E S L I P S PAT I A L

D I S T R I B U T I O N : OV E RV I E W

In Lavallée & Archuleta (2003), we proposed and tested a model

that includes one-point and two-point statistics for the slip distri-

bution of 1979 Imperial Valley earthquake. The stochastic model

is similar to the fractional Brownian motion (fBm)—see Peitgen &

Saupe (1988), and Falconer (1990). One of the procedures used to

obtain fBm, consists in generating white noise that is distributed

according to a Gaussian law over a grid or lattice (of any number of

dimensions), and then filtering the noise in the Fourier space to gen-

erate a ‘stochastic or random process’ characterized by a spectrum

with a power-law behaviour. In Lavallée & Archuleta (2003), we re-

laxed the constraint that the random variables had to be distributed

according to a Gaussian law and assumed the most general case of

the Lévy, or stable law, (Feller 1971; Grigoriu 1995; Nikias & Shao

1995; Uchaikin & Zolotarev 1999; Sornette 2004). The underlying

idea in adopting this generalization of fBm is that the probability

laws, as well as the PDF parameters characterizing the stochastic

model, are both fixed by the data. As we will see in the next sec-

tions, assuming that the one-point statistics are best described by a

Gauss law is too restrictive and not very accurate (see also Lavallée

& Archuleta 2003, 2005; Lavallée & Beltrami 2004).

The Lévy law (also denoted the stable law, Lévy-stable law or the

α-stable law in the literature) is the most general law for which the

Central Limit Theorem applies—specifically the sum of (indepen-

dent and identically distributed—iid) Lévy random variables is also

distributed according to a Lévy law. The Lévy law is characterized

by four parameters α, β, γ and μ. The parameter α, with 0 < α ≤
2, controls the rate of falloff of the tails of the PDF. The larger the

value of α, the less likely it is to find a random variable far from

the PDF maximum. The case α = 2 corresponds to the Gaussian

law; the case α = 1 with β = 0 corresponds to the Cauchy law.

The parameter β, with −1 ≤ β ≤ 1, controls the departure from

symmetry of the PDF curve. When β = 0, the PDF is symmetric.

The parameter γ , γ > 0, is mainly responsible for the PDF width.

When α = 2, the parameter γ is related to the variance σ 2 of the

Gaussian law by γ = σ 2/2. The parameter μ is the location or shift

parameter. When α = 2, then μ corresponds to the mean value, and

when α = 1 (with β = 0) it corresponds to the location parameter

of the Cauchy law. (See also the Appendix for additional details).
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The basic difference between a Gaussian law and a Lévy law can

be illustrated by comparing the distribution of heights with the dis-

tribution of annual incomes for American adult males (Montroll &

Shlesinger 1983). An average individual who seeks someone twice

or three times his height would likely fail. On the other hand, it

would not be difficult to find a person with twice or three time one’s

income. Systems at equilibrium or near the equilibrium are often

devoid of large fluctuation—this is the reason why they remain at

equilibrium—and can be (although not necessarily) described by the

Gaussian law. However, non-equilibrium system are characterized

by large fluctuations that can be best accounted by a Lévy law. It

should not be a surprise that earthquake slip or pre-stress belongs to

the latter because the slip is inferred from ground motion recordings

following an earthquake—a truly non-equilibrium phenomenon.

There are three assumptions made in the application of this

stochastic model to experimental data. First, we assume that the Lévy

PDF are truncated, indicating that random variables are bounded

between minimum and maximum values. However, we also assume

that these values are large enough so that the Central Limit Theorem

still applies (see Paul & Baschnagel 1999 and references therein for

a discussion on the validity of the Central Limit Theorem for trun-

cated Lévy random variables; for an interesting discussion of the

‘unbounded’ nature of probability law such as the Lévy law see the

Introduction in Nikias & Shao 1995 or Sornette 2004).

A common feature exhibited by ‘complex data’ in seismology

(or related disciplines) is the presence of scaling laws. Accurate

computation of such scaling laws and the range of their validity are

still open to debate. The second hypothesis adopted in this study, is

that the scaling law can only be observed and computed on average.

The scaling law does not have to be observed locally, that is, at a

particular location, over a set of subfaults or layers of the slip spatial

distribution. Local deviations from the scaling law are expected for

a finite—or small enough number—of events. Borrowing from the

terminology and conceptualization used in statistical physics, we

assume that the scaling law is ‘canonical’, that is, that it can be only

properly observed and computed when averaged over many events.

In a canonical description of the statistical properties of a system, the

average energy is conserved, while in a microcanonical description

the energy is exactly preserved everywhere in the system. Note also

that this requirement is rather typical for processes described by

fBm or similar random processes. The concept of canonical and

microcanonical descriptions have also been discussed in the context

of another stochastic model called cascade processes (for instance

see Lavallée et al. 1991).

In Andrews (1980), the scaling behaviour of the slip (or pre-

stress) spatial distribution was based on the assumption that the seis-

mic process is scale independent in a broad band region delimited

by the characteristic length scale of the brittle seismogenic region

(∼104 m) and the grain size of the medium (∼10−2 m). Thus, a

more accurate formulation of the scaling law associated with the

spectrum of the slip will restrict the power-law behaviour to a finite

subrange of the wavenumber k values. This subrange can be defined

as the scaling subrange extending from a minimum wavenumber

k min ∼ 10−4 m−1 to a maximum k max ∼ 102 m−1. Between these two

limits, we assume that the slip can be approximated by the stochas-

tic model discussed above. This is the third hypothesis adopted in

this study. It is similar to the formulation of the Kolmogorov law

for turbulent flow velocity, which is only observed within the ‘iner-

tial subrange of wavelength’ (see Monin & Yaglom 1987; McComb

1991; Frisch 1995, for additional details).

As a consequence of this formulation of the scaling subrange,

integration of the slip amplitude over a finite range of wavenumber

values cannot be used to constrain the value of the scaling exponent

associated with the spectrum of the slip amplitude. For instance,

the relation between the static self-energy E s and the slip Fourier

amplitude S(k) can be approximated by the following relation (for

details see Appendix A in Mai & Beroza 2002):

Es ∝
∫ 2π

0

∫ kmin

0

K (k)S(k)S(k)k dk dϕk

+
∫ 2π

0

∫ kmax

kmin

K (k)S(k)S(k)k dk dϕk

+
∫ 2π

0

∫ ∞

kmax

K (k)S(k)S(k)k dk dϕk (1)

where k is the 2-D wavenumber vector with magnitude

k =
√

k2
x + k2

y, ϕk the azimuthal angle in the k domain, and K(k)

the static stiffness function. The integration over k is divided in

three regions, k < k min, k min ≤ k ≤ k max, and k > k max, with k min

and kmax corresponding, respectively, to the upper and lower bounds

delimiting the scaling subrange. The third hypothesis adopted in this

study stipulates that S(k) scales with a power-law behaviour when k
satisfies k min ≤ k ≤ k max. Thus there is no divergence of the second

integral on the left hand side of eq. (1) as long as k min and k max have

finite and non-zero values. There is no divergence of the first and

third integrals in eq. (1) assuming that the functions S(k) and K(k)

are such that the product K (k)S(k)S(k)k decreases fast enough as

k → ∞ (see Appendix A2 and A3 in Mai & Beroza 2002) and is

not singular as k → 0. Herrero & Bernard (1994) reached a similar

conclusion regarding the computation of the rms value of the stress

drop obtained by integrating the stress drop over a finite range of

wavenumber values. That is, the integration in eq. (1) cannot be used

to constrain the value of the scaling exponent of the 2-D stress drop

power spectrum.

Finally, we also assume a linear relationship between the pre-

stress and the slip spatial distributions (Andrews 1980). Thus, the

pre-stress and the slip spatial distributions have similar random prop-

erties that can be also related by linear relationships.

3 1 - D S T O C H A S T I C M O D E L

3.1 Formulation of the stochastic model

The stochastic model proposed here consists of a convolution in

Fourier space. It is the product of the Fourier transform of random

variables (white noise) X and some function with a power-law de-

pendence k−ν/2
x where k x is the horizontal wavenumber. The scaling

exponent ν measures the departure from the non-correlated random

variable (white noise) with ν = 0. This stochastic process is similar

to a fractional Brownian motion that reduces to a random walk in

its simplest manifestation—with ν = 2 and X a Gaussian random

variable (Peitgen & Saupe 1988). In 1-D, our stochastic model Y x

is given by the following relationship:

Yx ∝
1+N/2∑

s=2−N/2

|kx/2π |−ν/2 Fs[Xx ] exp[−2π i(x − 1)(s − 1)/N ], (2)

for a set of random variables X x distributed over a 1-D lattice of

length N , where x is the integer spatial variable on the 1-D lattice.

The discrete variable s is related to k x by k x = 2π (s − 1)/N ; F s

[X x ] is the discrete Fourier transform of the random variables (for

s ≤ 0 in eq. (2), the index s = N + s in F s[X x ]). We assume

that k−ν/2
x F s [X x ] → 0 at s = 1 (or as k → 0). According to this
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formulation, the power spectrum P(k x ) for Y x will be given by the

following relation:

P(kx ) = |Fs[Yx ]|2 ∝ k−ν
x , (3)

This equation can be used to compute the values of the parameter ν

associated with Y x . Knowing this scaling exponent, the underlying

random variables X x associated with Y x can be computed by using

the following relationship:

Xx ∝ F−1
x

[
Fs[Yx ] × kν/2

x

]
, (4)

where F−1
x is the Fourier inverse. The one point statistical properties

of the stochastic model are completely specified when the probabil-

ity law and parameters governing X x are identified. The probability

law controls the variability of the stochastic model while ν constrains

its long-range correlation.

3.2 Stochastic modelling of earthquake source models

In this section, we discuss the computation of the parameters of the

stochastic model for the dip and strike slips for four earthquakes.

There are several features that distinguish our computation from the

stochastic modelling discussed in Somerville et al. (1999) or Mai

& Beroza (2002). First in both of their studies, the slip data were in-

terpolated before performing the Fourier analysis. The interpolation

creates additional correlations in the data and leads to a spurious es-

timation of the scaling exponent (for discussion and illustration see

Lavallée & Archuleta 2003, and Section 4.2). The second difference

is a consequence of the interpolation schemes used by Somerville

et al. (1999) or Mai & Beroza (2002): in both papers, the Fourier

analysis is performed in 2-D, a luxury that one does not have when

sticking to the original slip distribution (except for the Northridge

source model that will be considered in the next section). A third

difference is that they considered the vector sum of the slip ampli-

tude while we use both the dip and strike slip amplitudes separately.

There is no fundamental reason motivating our choice. However,

analysis of the slip along the dip and strike provides more data to

analyse and to validate the stochastic model. This procedure allows

comparing how the parameters of the stochastic model vary with

the slip direction. (For the 1979 Imperial Valley earthquake, we

only considered the strike slip because there is almost no spatial

variability in the inverted dip computed by Archuleta 1984.)

The dip and strike slip spatial distributions of the 1989 Loma

Prieta, the 1994 Northridge and 1995 Hyogo-ken Nanbu (Kobe)

earthquakes (see Figs 1–3), as well as the strike slip of the 1979

Imperial Valley earthquake (Fig. 4), are analysed according to the

following procedure.

For each distribution, we computed the mean power spectrum

P(kx ) by dividing the slip distribution into equally spaced horizontal

layers; for each layer we computed the power spectrum and then

averaged over all layers—see Figs 5(a) and (b). For each distribution,

the spectrum shows that there are no dominating wavenumbers,

which suggest that the data cannot be reduced to—or understood

as—a combination of several periodical functions. The curves show

that all the wavenumbers contribute to the slip variability, and that

the weight of the wavenumbers approximately follows a trend given

by a decaying power law (see eq. 3). The values of the scaling

exponents ν are reported in Tables 1 and 2 for the dip and the

strike slip distributions, respectively. Note that assuming that these

results can be extended to an isotropic 2-D stochastic model, then

the 2-D power spectrum density will have a power-law behaviour

characterized by a scaling exponent ν + 1 (see Peitgen & Saupe

1988, and Section 4). According to the results given in Tables 1 and
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Figure 1. The fault slip of the 1989 Loma Prieta earthquake obtained by

inverting strong motion velocity time series (Steidl et al. 1991). The slip used

in our paper corresponds to model 14 discussed in Steidl et al. (1991). The

spatial distribution of the slip was calculated at every 2 km along both the

downdip and the strike directions of the fault surface. The spatial variability

of the dip slip (a) and the strike slip (b) are illustrated as coloured contours

on the fault plane.

2, the scaling exponent ν + 1 will take values that range from 1.78

to 2.71 for the 2-D power spectrum density.

After estimating the parameter ν, each layer of the slip spatial

distribution is filtered in the Fourier space in such a way that the

resulting field has a mean power spectrum behaviour that follows a

flat curve (white noise). We assume that the resulting field, that is,

the slip after the dependence on k−ν has been removed, corresponds

to a field of random variables of magnitude X for which we compute

the PDF of X . The (discrete) PDFs are given in Figs 6–9 for the strike

slip distributions of the four earthquakes mentioned above.

The final step consists in determining the probability law that

will provide the best fit to the PDFs illustrated in Figs 6–9. Three

candidates are considered: the Gauss law, the Cauchy law and the

more general Lévy law. The method to compute the parameters is

discussed in the Appendix. For each earthquake, the parameters of

the best fitting Gaussian, Cauchy and Lévy laws are listed in Tables 1

and 2. The curves of the Gaussian, Cauchy and Lévy laws that best

fit the PDF are shown in Figs 6–9. For each slip distribution in this

study, the Lévy law provided the best fit to the PDF. For almost all of

the available slip distributions, the Cauchy law provides a better fit

than the Gauss law except for the dip and strike slip of the Hyogo-

ken Nanbu (Kobe) earthquake. In Figs 6–9, the tails of the PDF are

compared to the tail of the best fitting Cauchy, Gaussian and Lévy

curves, confirming that the Lévy law provides a better fit.
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Figure 2. The slip distribution of the 1994 Northridge earthquake is based

on the inversion of strong ground motion data (Liu and Archuleta, 2000 and

2004). The slip was calculated every 1.7 km along the downdip direction

of the fault surface that extends over 24 km, and every 1.76 km along the

strike that extends over 20 km. The spatial distributions of the dip slip (a)

and strike slip (b) are contoured onto the fault.

In computing the PDF associated with the Imperial Valley slip

distribution (see Fig. 7), we purposely chose to compute the PDF for

an increment in the random variable magnitude 	X (corresponding

to the width of the columns in Fig. 7) that differs from the one used

in Lavallée & Archuleta (2003). The motivation for this choice is

to get a rough estimate of the variation in the PDF parameters due

to a change in the computed PDF. In Lavallée & Archuleta (2003),

	X was set to 2.5 but is equal to 3.0 here. In this paper, we assume

that the PDF is symmetric (β = 0); so only three parameters were

determined. Comparing the values of the four Lévy parameters for

width increments 2.5 and 3.0, we obtain, respectively, values of 0.92

and 1.14 for α, 0.0 and 0.04 for β, 3.75 and 2.75 for γ , and values of

−1.0 and −0.42 for μ. The order of magnitude of each parameter is

similar for both computations. These numerical computations give

an indication of the accuracy of the parameters values estimated

(see also the Appendix for questions related to the accuracy of the

estimated parameters).

For the seven cases studied here, we find that the power spectrum

behaviour can be approximated by a power-law behaviour, although

the accuracy of this approximation varies from one case to another

(see the discussion in the caption of Fig. 5). The 1-D power spec-

trum scaling exponent ν takes values between 0.78 and 1.71. For

the three earthquakes for which analysis of slip in both the dip and

strike directions are performed separately, we find that the scal-

ing exponent values for the strike slip is systematically larger (see

Tables 1 and 2); Mai & Beroza (2002) reached a similar conclusion.

However, only the Northridge earthquake has a scaling exponent

that varies significantly for the two directions (see Tables 1 and 2).

This suggests a higher correlation in the strike direction with the

implications that the scaling properties of the Northridge spectrum

are anisotropic.

There are variations in the values of the Lévy parameters

(Tables 1 and 2) computed for the seven cases we have examined.

When comparing the values of the parameters α for the dip and

the strike directions of these three earthquakes, we find no signifi-

cant difference. The parameter α takes values close to 1, except for

Hyogo-ken Nanbu earthquake, where the values are around 1.5. This

suggests that the number of large slip events—asperities or large

stress drops—is less frequent for this earthquake when compared

to the other three earthquakes. The values taken by the parameter β

indicate a significant departure from a symmetric PDF for both slip

distributions (along dip and along strike) of the Loma Prieta earth-

quake and the strike slip of the Hyogo-ken Nanbu earthquake. For

the Loma Prieta, Hyogo-ken Nanbu and the Northridge earthquakes,

the values of the γ parameters associated with the dip slip are sys-

tematically larger that those computed for the strike slip. For both the

dip slip and the strike slip, the values of γ decay from a maximum

for the Loma Prieta earthquake, followed by the Hyogo-ken Nanbu

and the Northridge earthquake. There is no simple interpretation of

the variation in the values of γ when going from one earthquake

to another, since one or several parameters of the stochastic model,

such as α, β and ν, are also varying significantly from one model to

another. (It should be noted that the values estimated for the param-

eter γ will depend on the definition adopted for the inverse Fourier

transform used in eq. (4), but α is not affected by this definition.) Fi-

nally, note that when s = 1, the wavenumber k = 0 in the convolution

given by eq. (4). This implies that the average value of the random

variables estimated with eq. (4) will be zero. This will affect the

values computed for the location parameter μ and suggests that not

much importance should be assigned to the particular values of μ.

Variations in the stochastic model parameters from one earth-

quake to another may imply a dependence between the random
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Figure 3. Slip distribution of the 1995 Hyogo-ken Nanbu (Kobe) earthquake based on strong motion records (Sekiguchi et al. 2002). The fault plane is divided

in subfaults located at 2.05 km intervals in both the strike and the dip directions. The spatial distributions of the dip-slip (a) and strike-slip (b) are mapped onto

the fault.
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Figure 4. A faulting model of the 1979 Imperial Valley earthquake was

determined by trial-and-error comparison of synthetic particle velocity with

near-source recordings (Archuleta 1984). The spatial distribution of the slip

was calculated on a grid with 1.0 km spacing down dip and 2.5 km along the

strike. The fault surface extends from the surface to 13 km down dip and 35

km along the strike. Only the strike slip values were used in this study.

properties of the earthquake and the physical properties of the fault.

It may also point to some important difference in the process gov-

erning rupture propagation for each of the earthquakes. However,

these variations may also reflect, at least partially, the presence of

additional noisy effects and other uncertainties in the data. The slip

models used in this study were determined using different algo-

rithms. The algorithms themselves may be a cause for variations in

the stochastic model parameters—for instance due to the inclusion

of interpolation techniques (Liu & Archuleta 2004) or directivity ef-

fects (Sekiguchi et al. 2002) in the inversion. Further investigations

into the inversion methods would be needed to reach a definitive con-

clusion. Nevertheless, these results show that the stochastic model

described at the beginning of this section, can be used to compute

the one-point and two-point statistics of several earthquakes.

4 2 - D S T O C H A S T I C M O D E L

4.1 Formulation of the stochastic model

In the previous section, we presented the results of our analysis of

the statistical properties of the earthquake source models in terms

of a 1-D stochastic model. The stochastic model is based on the

assumption that the horizontal layers are statistically independent

one from the other. This assumption is not completely accurate.

For instance, a computation of the 2-D Fourier amplitude of the

dip and strike slips of the Northridge earthquake suggests that the

2-D Fourier amplitude is a function of the wavenumber amplitude

k = |k| =
√

k2
x + k2

y , with k the 2-D wavenumber vector; k x and k y

are horizontal and vertical wavenumbers, respectively (see Fig. 10).

To investigate the dependence on the wavenumber amplitude, we

can make the assumption that the slip distribution is isotropic and

that the spectrum is only a function of k (see also Mai & Beroza,

2002 for a discussion on this issue). Consequently, this will imply

that the correlation function—that is, two-point statistics—is only

a function of the distance between the two points and not of the
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Figure 5. The mean power spectrum P(k x ) as a function of the wavenumber

k x , and the best straight line that fits the log–log curve are reported for the slip

distributions of the Hyogo-ken Nanbu (black triangle �), the Imperial Valley

(green cross ×), the Loma Prieta (blue square 	
) and the Northridge (red

diamond ♦) earthquakes. These results suggest that the scaling behaviour

is observed for a scale length that ranges from 2 to 64 km. The values of

the scaling exponent for each earthquake are given in Tables 1 and 2. The

quality of the fitted curves illustrated in (a), as estimated by the values of the

linear correlation coefficient (in absolute values), goes from average (0.84

for Loma Prieta) to good (0.94 for Hyogo-ken Nanbu and Northridge). In

(b), it goes from poor (0.63 for Imperial Valley), to average (0.85 for Loma

Prieta) to good (0.94 for Northridge and 0.96 for Hyogo-ken Nanbu). The

scaling exponents and the linear correlation coefficients are obtained through

a linear least squares regression analysis of ln (P(k x )) as a function of ln (k x ).

The presence of uncertainties in computing the slip spatial distributions or

in recording the ground motions also impinges on the computation of the

power spectrum and can be responsible for the deviations observed in the

plots.

direction. This assumption, as the one discussed in the previous

section, can be understood as a first order approximation. Both as-

sumptions are probably too simple to fully account for all the com-

plex features included in the slip model (see Fig. 10). As far as we

know, there is no theoretical formulation available for the correla-

tion function of the spatial slip distribution that goes beyond the

model discussed in this section (see also Herrero & Bernard 1994;

Mai & Beroza 2002). Furthermore, empirical derivation of a more

sophisticated functional behaviour for the correlation function—or

spectrum—is hardly possible due to the low number of subfaults

computed in slip models. The only available alternative to the as-

sumption that the horizontal layers are statistically independent is

the assumption that the slip distribution is isotropic. In this section,

we derive a stochastic model for the Northridge slip distribution

based on the assumption that the correlation is isotropic. The goal

of this exercise is to be able to appreciate the correctness of the

description of the slip magnitude—that is, one-point statistic—in

terms of a Lévy distribution under these two assumptions. We are

also interested in comparing how the parameter values change as a

function of the 1-D or 2-D description.

The 1-D stochastic model discussed in Section 3 can be easily

generalized to a 2-D isotropic stochastic model by following the

procedure used to generalize 1-D fBm to 2-D fBm (Peitgen & Saupe

1988). In two dimensions, the stochastic model Y x,y is given by the

following relationship:

Yx,y ∝
1+N/2∑

t=2−N/2

1+N/2∑
s=2−N/2

(k/2π )−(ν+1)/2 Fs,t [Xx,y]

exp[2π i(x − 1)(s − 1)/N ] exp[2π i(y − 1)(t − 1)/N ],

(5)

for a set of random variables X x,y distributed over a 2-D square

lattice of size N , where x and y are the integer spatial variables

on the 2-D lattice with the distance r = √
x2 + y2. Both sums in

eq. (5) go from 1 to N ; the discrete variables s and t are related to k
by k = 2π

√
(s − 1)2 + (t − 1)2/N ; F s,t [X x,y] is the 2-D discrete

Fourier transform of the random variables (for s ≤ 0, the index s =
N + s and for t ≤ 0, the index t = N + t in F s,t [X x,y]). According

to this formulation, the 2-D power spectrum density P D(k) for Y x,y

will be given by the following relation (see Peitgen & Saupe 1988):

PD(k) ∝ k−ν−1, (6)

with P D(k) such that
∫

PD(k)k dk = ∫∫ |Yx,y |2 dx dy (Parseval’s

theorem). (Note that integration over the azimuthal angle in the

Fourier domain is included in P D(k)—see Turcotte 1997.) As for

the 1-D stochastic model, after computing the scaling exponent ν for

a stochastic model Y x,y , the random variables X x,y can be computed

by using the relationship:

Xx,y ∝ F−1
x,y [Fs,t

[
Yx,y] × k(ν+1)/2

]
, (7)

where F−1
x,y is the 2-D Fourier inverse.

4.2 Stochastic modelling of the 1995 Northridge

slip distribution

Assuming an isotropic distribution of heterogeneities, we compute

the 2-D power spectrum density, for the dip- and strike-slip dis-

tributions of the Northridge earthquake (Fig. 11). The values of

the scaling exponents are close to 2 (Table 3). These values are in

good agreement with the model of slip heterogeneity discussed by

Lomnitz-Adler & Lemus-Diaz (1989). Based on a dimensional anal-

ysis of the slip property at different scales for such models, Herrero

& Bernard (1994), inferred that the slip Fourier amplitude should

decay with a power law given by k−1 and, thus, the power spectrum

density will decay according to a k−2 power law. Herrero & Bernard

(1994), discarded the Lomnitz-Adler and Lemus-Diaz’s model on

the basis that the stress drop values are not ‘physically suitable’

for the limiting cases of very large or very small values of k. This

assertion need to be reexamined in view of the hypothesis that the

power-law behaviour of the power spectrum density is limited to a

finite range of k values (see Section 2).

However, the values of the scaling exponent computed for the

Northridge earthquake are lower than those reported in Somerville
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Table 1. Parameters of the stochastic model for the dip slip of three earthquakes. The parameter ν

is the scaling exponent of the 1-D power spectrum (Fig. 3). The parameters of the Gauss, Cauchy

and Lévy laws that best fit the PDF(X ) in Figs 6, 9 and 11 are given.

Scaling
Gauss law Cauchy law Lévy law

Exponent

ν μ σ γ μ α β γ μ

1989 Loma Prieta 0.94 −8.5 22. 16.4 −10.2 1.31 0.84 34.5 14.3

1994 Northridge 1.18 −1.52 13.9 9.7 −1.13 1.34 −0.05 21.3 −2.2

1995 Hyogo-ken Nanbu 1.47 0.63 9.91 7.3 1.2 1.50 −0.2 18.2 0.2

Table 2. Parameters of the stochastic model for the strike slip of the four earthquakes. The parameter

ν is the scaling exponent of the 1-D power spectrum (Fig. 3). The parameters of the Gauss, Cauchy

and Lévy laws that best fit the PDF(X ) in Figs 7, 8, 10 and 12 are given.

Scaling
Gauss law Cauchy law Lévy law

Exponent

ν μ σ γ μ α β γ μ

1979 Imperial Valley 0.78 −0.73 4.55 3.3 −0.47 1.14 −0.04 3.75 −1.0

1989 Loma Prieta 1.07 −5.5 19. 13.5. −8.3 1.07 0.6 15.2 63.7

1994 Northridge 1.71 −0.1 6.3 4.29 −0.56 1.17 0.07 6.41 1.1

1995 Hyogo-ken Nanbu 1.48 −2.2 6.4 4.8 −2.6 1.56 0.85 9.8 0.05

et al. (1999) and Mai & Beroza (2002). In Somerville et al. (1999),

the power spectrum decays approximately with a scaling exponent

of −4, while Mai & Beroza (2002) reported values close to −3 in

a study including many source models. In both papers, the slip data

were interpolated before computing the Fourier transform. Thus, the

scaling behaviour for the power spectrum density can be understood

as resulting from the convolution of the intrinsic scaling behaviour

of the data ∼k−η1 with the scaling behaviour generated by interpo-

lation of the data ∼k−η2 : that is the power spectrum would have the

following relationship:

∼ k−η1−η2 , (8)

where η1 corresponds to the intrinsic scaling exponent of the data,

and η2 corresponds to the scaling exponent induced by interpolat-

ing the data. The scaling exponent reported in these papers is then

approximately equal to the sum of the scaling exponents η1 and η2,

that is

η1 + η2 ∼ 4, (9)

and thus

η1 ∼ 4 − η2 < 4. (10)

Although the value of η2 is probably a function of the specific details

of the interpolation scheme used, its value cannot be ignored (fig. 2 of

Lavallée & Archuleta 2003). By this simple argument, the intrinsic

scaling exponent η1 must be smaller than 4 (Somerville et al. 1999)

or 3 (Mai & Beroza 2002) and thus supporting, to a certain extent,

the values reported in Table 3. Analogously, including the effect of

interpolation in the theoretical model discussed by Andrews (1980)

or Herrero & Bernard (1994), will lead to a power spectrum density

with a scaling exponent larger than 4 and thus larger than the values

reported in Somerville et al. (1999) and Mai & Beroza (2002).

The spatial distribution of the random variable X x,y is obtained by

filtering in 2-D (see eq. 7) the slip distribution. The random variable

is a slip that has a flat power spectrum. The (discrete) PDFs are

computed for the filtered strike slip (Fig. 12). Finally, the parameters

of the Gaussian, Cauchy and Lévy laws that best fit the PDF (Table 3)

are computed following the procedure described in the Appendix.

The discrete PDF as well as the curves of the Gaussian, Cauchy and

Lévy laws that best fit the PDF are shown in Fig. 12.

As was true for the 1-D modelling of the Northridge earthquake,

the Lévy law again provides the best fit to the computed PDF. In

1-D and 2-D, the distribution of the random variables (the filtered

slip) is almost symmetric (β close to 0). However, the parameter α

takes larger values when compared to the values obtained for the

1-D modelling of the Northridge earthquake. Nevertheless, these

values are within the range of values reported for all the earthquakes

discussed in the previous section. This implies that the 1-D model

predicts extreme large events—such as asperities—with a higher

frequency than the 2-D model. It is difficult to assess the reason

why we observe such a difference. This may reflect uncertainty in the

estimate of the parameterα for this data set (see also the Appendix on

this question). To get a better estimate of this parameter, and also to

assess the correction of a 1-D or 2-D stochastic modelling, additional

investigations are needed. For instance, one could analyse in parallel

the statistical properties of the source model and the ground motion

(see Lavallée & Archuleta 2005).

Comparison of the values of the parameters γ and μ obtained

from a 1-D and 2-D modelling is not relevant (as described in the

previous section). The value taken by the parameter γ depends on the

constants used in the definition of eqs (2) and (5). These constants

are not identical and have a different effect on the estimated γ .

The basic idea behind the wavenumber filtering is to obtain (iid)

random variables (white noise) for which we can compute the proba-

bility law associated with them (see also the discussion in Section A2

of the Appendix). The random variables, computed through the 1-D

and 2-D filtering processes described above, are only approximately

independent and identically distributed. Nevertheless, the values of

the parameters for the Cauchy, the Gauss and Lévy laws following

the 1-D and 2-D filtering suggests the range of values that parameters

of the Lévy law can take.

5 D I S C U S S I O N : C O N S E Q U E N C E S

O F T H E L É V Y L AW

The formulation of the slip and pre-stress variability in terms of

the Lévy random variables has several interesting consequences.
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Figure 6. (a) The (discrete) probability density function (PDF; red and blue

dots and bars) for the filtered strike slip X of the Hyogo-ken Nanbu (Kobe)

earthquake is compared to curves of the three probability laws that best fit

the PDF: the Cauchy law (black curve), the Gaussian law (dashed curve) and

the Lévy law (green curve). The left side of the PDF (X < 0) is coloured

in red while the right (X > 0) side is in blue. The magnitude of the random

variables (filtered slip) is given by X . The width of the bar, corresponding to

the increment used to estimate the PDF, is 4. For this case, the shape of the

PDF illustrated in (a) is asymmetric with respect to its maximum and best fit

by an asymmetric Lévy law with parameter β �= 0 (see also the Appendix).

The PDFs associated with Cauchy and Gauss laws are both characterized by

curves symmetric with respect to its maximum. For this reason, the curves

of the Cauchy and Gauss laws ‘overshoot’ the extreme events in the left tail

of the computed PDF. (b) The right tails of the curves in (a) are illustrated on

a log–log plot. Lévy and Cauchy PDFs are characterized by tails that decay

according to a power law that is best illustrated on a log–log plot. The misfit

of the Gaussian PDF is more obvious in this plot. In particular, note that

according to the Gauss law, the large (filtered slip) values—last points on

the right hand side of the graphics—have almost a zero probability of being

observed. The parameters of the Gauss, Cauchy and Lévy laws are given in

Table 2.

Random variables governed by a Lévy law are the most general

case for which the Central Limit Theorem applies. According to

this theorem, a combination of (iid) Lévy random variables X 1 and

X 2 will result in a random variable X that also belongs to a Lévy

law:

a1 X1 + a2 X2
d= aX + b, (11)

where a, a1, and a2 are real constants, b is a real number and the

symbol
d= stands for equal in probability distribution—that is, the

random variables a1 X 1 + a2 X 2 and aX + b have the same prob-

ability distribution or PDF. This implies that the PDF for X will

differ from the PDF for X 1 or X 2 by a translation along the horizon-

tal axis and a multiplicative constant (Uchaikin & Zolotarev 1999).
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Figure 7. Same as Fig. 6, but for the random variables associated with the

filtered strike slip of the Imperial Valley earthquake. The width of the bar,

corresponding to the increment used to estimate the PDF, is 3. The remarks

discussed in the caption of Fig. 6 (b) also apply for this case (see also Lavallée

& Archuleta 2003). The parameters of the Gauss, Cauchy and Lévy laws are

given in Table 2.

This property was called ‘self-replication’ in Kagan (1994) since

‘the sum of random stable [Lévy] variables is itself a stable [Lévy]

variable’.

For any (discrete) location on the grid, eqs (4) and (7) can be

reduced to a sum of N (iid) Lévy random variables (weighted by

constant). According to the Central Limit Theorem, the stochastic

model Y x (1-D) or Y x,y(2-D) will have its amplitude distributed ac-

cording to a Lévy law. Consequently, the slip or pre-stress spatial

distribution is also distributed according to a Lévy law, although

the parameters of the Lévy law—γ and μ—will be functions of the

spatial position on the fault surface.

Consider now the operation of local averaging (also known as

coarse graining)—that consists in computing an average over a space

interval smaller than the total length of the grid but larger than the

grid resolution. This operation applied to a stochastic model Y x cor-

responds to a sum of Lévy random variables (weighted by different

constants). According to the Central Limit Theorem, the amplitude

of the resulting field, at a lower resolution, will be also distributed

according to a Lévy law, although again the parameters of the Lévy

law—γ and μ—will be functions of the resolution. Slip models for

different earthquakes are often computed at different resolutions. To

get all the slip models at the same resolution, one can compute local

averages over those models with a higher resolution. The statisti-

cal properties of the slip transformed under such an operation will

not be affected. In other words, a description of the slip statistical

properties in terms of the stochastic model discussed above guar-

anties that such properties are similar within the scales for which the
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Figure 8. Same as Fig. 6, but for the random variables associated with the

filtered strike slip of the Loma Prieta earthquake. The width of the bar,

corresponding to the increment used to estimate the PDF, is 10. The remarks

discussed in the caption of Fig. 9 for an asymmetric PDF also apply here.

The parameters of the Gauss, Cauchy and Lévy laws are given in Table 2.

spectrum power-law behaviour remains valid. Computation of the

statistical properties of the slip distribution at different resolutions

will become almost intractable if the statistical properties of the slip

cannot be approximated by a Lévy law. The statistical properties,

and in particular the probability law, will depend on the resolution

of the slip inversion.

The dependence of the statistical properties of the slip distribu-

tion on the resolution of the slip model has been ignored most of the

time. Neglecting this question has consequences that need discus-

sion. Consider the converse by supposing that the slip or pre-stress

spatial variability is distributed according to a non-Lévy law. For

instance, let us assume that it is a uniform law. This is the hypoth-

esis adopted by several authors to generate the slip heterogeneity

(Boore & Joyner 1978) or the pre-stress heterogeneity (Oglesby &

Day 2002). Under the Central Limit Theorem, a sum of (iid) ran-

dom variables distributed according to a uniform law converges to

a Gauss law. This implies that any transformation of slip—spatially

distributed according to a uniform law—that involves a sum will

lead to a slip that differs significantly, in terms of its probability law,

from the original slip distribution. Examples of such transformations

found in the literature include smoothing the slip (Oglesby & Day

2002) and using interpolations to get the field at higher resolution

(Somerville et al. 1999; Mai & Beroza 2002). Such transformations

introduce an artificial dependency between the slip resolution and

the probability law. A subsidiary question arises. Assuming that

by inversion of ground motions one finds slip variability that is dis-

tributed according to a uniform law at a certain resolution, what kind

of probability law will be found at a higher resolution? What kind of
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Figure 9. Same as Fig. 6, but for the random variables associated with

the filtered strike slip of the Northridge earthquake. The width of the bar,

corresponding to the increment used to estimate the PDF, is 4. The remarks

in caption of Fig. 6(b) also apply for this case. The curve corresponding to

the Lévy law underestimates the maximum of the PDF but provides a better

fit to the other PDF values. The parameters of the Gauss, Cauchy and Lévy

laws are given in Table 2.

transformation is required to relate the probability laws computed

at different resolutions?

In seismology, as in geophysics in general, data are collected

or inferred at various resolutions either in time or space. To get a

statistical description of the observation where the description is
independent of the resolution imposes constraints on the choice of

probability laws that can be used for such a purpose. If we do not

want to specify different probability laws at different resolutions, the

properties of the random variables should remain invariant under

mathematical transformations that mimic transformations of data

from one resolution to an other. Because of the Central Limit The-

orem, the Lévy random variables have these properties.

The stochastic model discussed in this paper can also be used to

generate synthetic slip spatial distributions. Several algorithms have

been developed to generate Lévy random variables (Chambers et al.
1976; Grigoriu 1995; Nikias & Shao 1995). Examples of synthetic

fields generated by the stochastic model discussed above and com-

parisons to real data are discussed in Lavallée & Archuleta (2003).

Detailed discussions of the procedure to generate fBm are available

in the literature (see among others, Peitgen & Saupe 1988; Crilly

et al. 1991; Turcotte 1997). Substituting Lévy random variables

for the Gauss random variables in these procedures will generate

stochastic models equivalent to those given by eq. (2) or (5). Note,

that because an interpolation in the physical space corresponds to

extrapolation in the Fourier space, the stochastic model can be used
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Figure 10. Contour plot of the complex behaviour of the Fourier amplitude

of the dip (a) and strike (b) slip in the wavenumber space. The Fourier am-

plitude is function of the horizontal and vertical wavenumbers, respectively,

k x and k y . The large and low values of the Fourier amplitude are in red

and blue, respectively. However, in (b), contour lines are distributed almost

horizontally in a region close to k y = 0, indicating higher correlation along

this direction. This suggests that the approximation of the strike slip in terms

of a 1-D stochastic model is more appropriate in this case (see Section 3).

to simulate spatial distributions of slip at a subresolution not cur-

rently available through kinematic inversions.

Accordingly, the stochastic model will allow one to generate many

samples of slip spatial distributions. Although the samples are char-

acterized by the same model parameters, every sample will be visu-

ally different from the others. This is a consequence of the random

nature of the model. We also think that it is due to the intrinsic

random nature of the earthquake process that source models com-

puted for the same earthquake can be so different from one another.

(Examples of different source models for the same earthquake can be

found at the following address: http://www.seismo.ethz.ch/srcmod

; Mai et al. 2005.) For instance, consider the following experience

where several dice are thrown but only the sum is recorded. Let us

assume that, in addition to the number of dice, this is the only infor-

mation made available to the modellers. Based on mechanical laws
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Figure 11. The 2-D power-spectrum density P D(k) is computed assuming

that the dip and strike slip spatial distributions are isotropic. The square of

the Fourier amplitude is estimated. The results are integrated over a (ap-

proximated) circle of radius k with k =
√

k2
x + k2

y and then divided by k.

The 2-D power-spectrum density P D(k) and the straight line that best fits

the log–log curve are shown for the dip slip distribution (black triangle �),

and the strike slip distribution (blue square 	
). These results suggest that the

scaling behaviour is observed for a scale length ranging from 4 to 20 km. The

values of the scaling exponent are given in Table 3. The linear correlation

coefficient (in absolute values) takes a value of 0.91 for the dip slip and 0.96

for the strike slip.

of motions, one can generate simulations of the rolling dice. For in-

stance if for a pair of dice the observation is seven, then scenarios of

rolling dice that provide final combinations, such as one and six, two

and five or three and four, are all legitimate although quite different

solutions. A similar interpretation may hold for the radiation field

generated by the earthquake ruptures. Namely, several combina-

tions of asperities distributed over the fault, statistically equivalent

but physically located at different positions, can generate a seismic

wave radiation pattern that is similar in terms of observations.

This section would not be complete without discussing the caveats

and limitations underlying the results discussed in this paper. Ground

motion is usually understood has a convolution of source, path and

site effects. The inversion for the source model depends on the wave

propagation through an uncertain crustal structure. The effect of

this uncertainty is a fundamental but difficult question. In princi-

ple, uncertainties in the slip distribution can be partially quantified

by comparing the slip distribution computed in different inversions.

However, only a few papers have inverted real data using the same

method applied to different velocity models (Ji et al. 2002; Liu &

Archuleta 2004). One can also argue that the quality of the available

data is not sufficient, or that the number of subfaults is not large

enough to achieve a significant description of the statistical prop-

erties of the source model. In the Appendix, we discuss the issues

related to the computation of the statistical properties when there

are a limited number of subfaults that describe the slip.

There is no doubt that the slip models are not perfect or that

there are parts of the fault that are not well resolved. It should be

noted that ‘lack’ of quality or resolution has not prevented using

these slip models as a basis for numerical simulations of rupture

propagation under heterogeneous conditions by which properties of

the source have been inferred (e.g. Beroza & Mikumo 1996; Ide

& Takeo 1997; Olsen et al. 1997; Nielsen & Olsen 1999; Peyrat

et al. 2001; Ide 2002; Favreau & Archuleta 2003). The slip models
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Table 3. Parameters of the 2-D stochastic model for the dip and strike slip of the Northridge

earthquake. The parameter (ν + 1) is the scaling exponent of the 2-D power-spectrum density

(Fig. 14). The parameters of the Gauss, Cauchy and Lévy laws that best fit the PDF(X ) in Figs 15

and 16 are given.

Scaling
Gauss law Cauchy law Lévy law

Exponent

(ν + 1) μ σ γ μ α β γ μ

1994 Northridge dip slip 1.74 −3.8 13.1 10.1 −3.32 1.51 0.2 28.3 −0.9

1994 Northridge strike slip 2.05 1.4 8 6.1 1.1 1.50 0.2 13.8 2.1

−40. −20. 0. 20.
X

0.

0.01
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X
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|X|
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F(

X
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a

b

Figure 12. Same as Fig. 6, but for the random variables correspond to the

2-D filtered strike slip of the Northridge earthquake. The width of the bar,

corresponding to the increment used to estimate the PDF, is 8. The remarks

given in the caption of Fig. 6(b) apply here. The parameters of the Gauss,

Cauchy and Lévy laws are given in Table 3.

remain a primary description of faulting that is derived from data.

Our emphasis has been to find statistical parameters of the faulting

that are consistent with the data.

The results, reported in Sections 3 and 4, are in good agreement

with other results reported in the literature. For instance, in studies of

the distribution of asperities over a fault, Fakao & Furumoto (1985)

found that the probability (or complementary cumulative distribu-

tion function: equal to one minus the cumulative distribution func-

tion) for the size of the asperities is best described by a power-law

behaviour with an exponent of 1; Gusev (1989), concluded that the

exponent should be 2. Except for α = 2, that is, Gauss law, the Lévy

complementary cumulative distribution function is characterized by

a ‘heavy tail’ that follows a power-law behaviour with exponent α

(see Uchaikin & Zolotarev 1999, among other). The values of α,

given in Tables 1–3, are within the previously reported values of 1

and 2. In a subsequent paper, Gusev (1992) speculates on the Lévy

law as a potential candidate to describe the asperity distribution.

Furthermore, Kagan (1994) has suggested that in earthquake focal

zones the stress increments due to past earthquakes are also dis-

tributed according to a Lévy law with α close to or less than 1 (on

this question see also Marsan 2005). Ouillon & Sornette (2005) have

used stress sources distributed according to a Cauchy law—as sug-

gested by Kagan (1994)—to derive a new formulation of the Omori

law. Finally, the computed parameters of the stochastic model for a

source model of the 1999 Chi Chi earthquake are in good agreement

with values reported in Section 3 (Lavallée & Archuleta 2005).

We have not included the spatial variation in other source param-

eters such as rise time and rupture velocity. Nor have we considered

the effect of the time evolution of heterogeneity, for example, that

may arise due to healing of the fault. The study of complexity in

geophysics is a very difficult task. As far as we know, there are

no guidelines or recipes that will guarantee success in decipher-

ing complexity. In devising our strategy to investigate earthquake

complexity, we first decided to try to isolate the effect of slip and

pre-stress spatial heterogeneity. Spatial and time variability in other

parameters as well as potential coupling effects between the param-

eters can be added in future research.

6 C O N C L U S I O N

In this study, we have investigated the variability of slips models

computed for four earthquakes: the 1979 Imperial Valley, the 1989

Loma Prieta, the 1994 Northridge and 1995 Hyogo-ken Nanbu

(Kobe). For the four earthquakes, we show that the average 1-D

power spectrum—and the 2-D power-spectrum density—of the raw,

that is, non-interpolated, data follow a power-law behaviour where

the scaling exponents have values less than −4 (see Tables 1, 2

and 3). These results suggest that the origin of correlations in com-

puted slips models are not clearly understood and request additional

investigations. In particular, going beyond the specificity of each

algorithm used to compute source inversion, we should try to un-

derstand how the number, the location and configuration of stations

used in the inversion (Custódio et al. 2005) affect the random prop-

erties of the slip spatial variability in general, and the computed

behaviour of the spectrum in particular.

Equally important to the wavenumber spectrum is the PDF for

the filtered slip amplitudes. We find that the filtered slips are non-

Gaussian; a Lévy law provides the best fit. Lévy laws are character-

ized by long probability tails that allow the presence of ‘extremes’,

that is, large values of slip—corresponding to asperities—with a

higher frequency of occurrence than with a Gaussian law. Our anal-

ysis implies that there is a higher probability of having large slip

amplitudes distributed over the fault surface, for example, see Fig. 4

in Lavallée & Archuleta (2003) for a comparison between synthetic

earthquake slip distributions based on random variables distributed

according to a Cauchy law and a Gauss law. The effects of differ-

ent distributions on rupture propagation are noticeable in movies
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of dynamic rupture (http://www.crustal.ucsb.edu/∼ralph/rupture/.)

These results suggest that some features of the slip heterogeneity

are quite general, perhaps ‘universal,’ and thus can be formulated

in term of the stochastic model discussed in this paper.

For the Northridge earthquake, we considered two different as-

sumptions regarding the properties of the spectrum or correlation

function. Although in both cases we observe that the slip spatial

variability can be approximated by Lévy random variables, the pa-

rameters of the Lévy law depend on the filtering necessary to obtain

the white noise. It should be noted, however, that the variation in

values derived from the data for the Lévy index parameter α—the

parameter characterizing the fall off of the PDF for large event—is

of the same order of magnitude as the variation observed in this pa-

rameter from computer generated Lévy random variables (see the

Appendix).

The randomness of the source has been postulated in several

papers, and in a fewer number of papers, stochastic models have been

inferred and parametrized through comparison with data. There is a

consensus that, as far as earthquakes are concerned, nature is indeed

rolling dice. The results presented in the present paper confirm that

it is the case but with one important qualification: the probability

law that governs the statistics of the dice is a Lévy law.
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A P P E N D I X A : O N T H E E S T I M AT E

( D E T E R M I N AT I O N ) O F T H E

PA R A M E T E R S O F T H E L É V Y L AW

A1 White noise

In this appendix, we discuss the procedure used to estimate the

Lévy parameters corresponding to a set of random variables. We

also present the results obtained when using this procedure on Lévy

random variables generated with the proper algorithms. However,

first, we have to introduce the mathematical formulation of the PDF

and characteristic function for the Lévy law (detailed discussions

can be found in the literature: Feller 1971; Grigoriu 1995; Nikias &

Shao 1995; Uchaikin & Zolotarev 1999; Sornette 2004).

Usually the Lévy PDF p(z; α, β, γ , μ) is given by the Fourier

transform of the characteristic function ϕ(k; α, β, γ , μ):

p(z; α, β, γ, μ) = (2π )−1

∫ ∞

−∞
exp (−ikz)ϕ(k; α, β, γ, μ) dk,

(A1)

with the functional behaviour of the characteristic function given by

the following expression:

ϕ(k; α, β, γ, μ) = exp[γ (ikμ − |k|α + ikω(k; α, β))], (A2)

and with

ω(k; α, β) =
{

|k|α−1β tan(απ/2)

−β(2/π ) ln |k| (A3)

The four parameters α, β, γ and μ are limited to a domain of values

defined by:

0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, and − ∞ < μ < ∞,

(A4)

(see also Section 2 for a discussion on the parameters; Fig. A1 il-

lustrates the functional behaviour of p(z; α, β, γ , μ) for different

values of the parameter α). Note that the representation of the char-

acteristic function is not unique; other forms have been postulated

(for a discussion see Uchaikin & Zolotarev 1999). Traditional lit-

erature on the Lévy law claims that there are only a few cases for
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Figure A1. Curves of the Lévy PDF p(z; α, β, γ , μ) for several values of the

parameter α: (a) the overall PDF and (b) the tails of the PDF. The parameter

α is known as the Lévy exponent, the characteristic or stable exponent. It

controls the rate of fall off of the PDF as illustrated in (b) on a log–log plot.

Note that by keeping the values of other parameters fixed, the probability of

observing random variables with large values increases as α decreases.

which the functional behaviour of p(z; α, β, γ , μ) can be expressed

in terms of known functions. They are the Gauss law for α = 2, the

Lévy law for α = 1 and β = 0, and the half-normal law (sometimes

referred as the Lévy law) for α = 1/2 and β = 1. This statement is

not accurate anymore since analytical expressions of p(z; α, β, γ ,

μ) have been found for some values of the parameters α, β, γ and

μ in terms of generalized hypergeometric functions and Meijer’s G

functions (see Hoffman-Jorgensen 1993; Zolotarev 1995; Uchaikin

& Zolotarev 1999). However, for numerical computation, this ana-

lytical representation in term of hypergeometric functions is rather

cumbersome and not really useful. First, the analytical form does

not exist for all values of the parameters α, β, γ and μ; and when

it does exist, it takes a long time to compute the integral and to

compile the hypergeometric functions. For all the results discussed

in this paper, the integral in eq. (A1) is computed numerically using

the algorithm NIntegral in Mathematica.

In principle, for a given set of discrete values of the probabil-

ity density function PDF(X i ), one can compute the values of the

parameters of the Lévy law that minimize the following expression

N∑
i=1

|P DF(Xi ) − p(Xi ; α, β, γ, μ)|, (A5)

under the constraints given in eq. (A4). In eq. (A5), X i is the ith
random value and N the number of random variables. To find the

parameters that minimize eq. (A5), we use the optimization algo-

rithm NMinimize provided in Mathematica. This new optimization

algorithm includes several methods for global optimization:

genetic programming, non-linear simplex algorithm and simulated

annealing (Wolfram 2003; additional details are available on

the web at http://documents.wolfram.com/v5/Built-inFunctions/

NumericalComputation/Optimization/AdvancedDocumentation/

NMinimize.html). The expression in eq. (A5) is computed using

all three methods. Comparing the results obtained by the different

methods ensures a better and robust minimization of the expression

in eq. (A5). The results reported in this paper are those correspond-

ing to the method that provides the lowest estimate of eq. (A5).

Also comparing the parameter values through different methods

allows the inference of a ‘margin of error’ in the parameter values

when such values differ from one method to another. However,

this procedure is expensive in computer time. This is partially

due to the number of parameters to be fit, the constraints in

eq. (A4) and the numerical integration of eq. (A1). Furthermore,

optimization algorithms require initial values for the parameter

to be fit. The choice of the initial values also affects the duration

of the compilation—and sometimes finding an optimal solution.

To achieve a faster computation, and hopefully a more robust

compilation of the parameter values, we have devised an iterative

procedure allowing a better choice for the initial values to be fed

into the algorithm NMinimize.

First it should be noted that as an alternative to optimizing

eq. (A5), one can rather, or additionally, optimize an objective func-

tion based on the characteristic function (Grigoriu 1995, and refer-

ences therein):∑
k

|ϕ(k; α, β, γ, μ) − ϕk |. (A6)

The characteristic function ϕ k , corresponding to the random vari-

ables X , is computed by estimating the following expression:

ϕk = 〈Exp(ik X )〉, (A7)

where k is the wavenumber and 〈f 〉 is the expected (or mean) values

of f . The characteristic function ϕ k is well located in the wavenum-

ber space and almost zero outside a finite interval of k values. How-

ever, the values of k used to compute ϕ k in eq. (A7) have to be

chosen carefully, especially large values of k because accurate com-

pilation of ϕ k is more difficult to achieve as the value of k increases.

(Note that these values are independent of the values used in the

power-spectrum analysis discussed earlier in this paper.) One can

also observe that the absolute value of the characteristic function,

given by eq. (A2), is specified by only two parameters (see Uchaikin

& Zolotarev 1999):

ϕA(k; α, γ ) = |ϕ(k; α, β, γ, μ)| = exp[−γ |k|α], (A8)

and that an objective function associated with ϕ A(k; α, γ ) can be

computed and optimized to determine the values of the parameters

α and γ . The objective function to be optimized is given by the

following expression:∑
k

| ϕA(k; α, γ ) − |ϕk | |. (A9)

The procedure used to estimate the parameters of the Lévy law can

be summarized by the following steps:

(1) Compute the parameters γ and μ that optimize expression

(A5) for a Gauss and a Cauchy law. In this computation, we use the

well-known analytical expressions for the Gauss p(z; 2, 0, γ , μ) and

Cauchy p(z; 1, 0, γ , μ) PDFs.

(2) Compute the parameters α and γ that optimize expression

(A9). For this purpose, we use as initial values for α and γ the values

obtained in the first step, either the Gauss or Cauchy parameters
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Table A1. Summary of the values obtained for the parameters of the Cauchy, Gauss and Lévy law.

The last column reports the values computed for the objective functions given in eq. (A5). Note

that, although we report the values for eq. (A5) in the sixth line, the parameters reported in these

lines were computed by optimizing eq. (A6). The second line includes the values of the Gauss

parameters used to generate the random variables with an algorithm provided with Mathematica.

Fitted functions α β γ μ Minimum of the objective function in eq. (A5)

Original values 2 — 2 0 Does not apply

p(x; 2, β, γ , μ) (Gauss) — — 2.1 0.07 0.154

p(x; 1, 0, γ , μ) (Cauchy) — — 1.51 −0.06 0.338

ϕ A(k; α, γ ) 2 — 2.09 — Does not apply

ϕ (k; α, β, γ , μ) 1.99 1.0 2.08 0.05 0.155

p(x ; α, β, γ , μ) 1.91 0.45 1.99 0.06 0.148

Table A2. Same as Table A1. The second line includes the values of the Cauchy parameters used

to generate the random variables with an algorithm provided with Mathematica.

Fitted functions α β γ μ Minimum of the objective function eq. (A5)

Original values 1 — 1 0 Does not apply

p(x; 2, β, γ , μ)(Gauss) — — 0.84 0.02 0.379

p(x; 1, 0, γ , μ) (Cauchy) — — 0.97 −0.07 0.226

ϕ A(k; α, γ ) 1.16 — 0.89 — Does not apply

ϕ (k; α, β, γ , μ) 1.15 0.26 0.88 0.93 0.216

p(x ; α, β, γ , μ) 1.04 0.04 0.95 0.45 0.184

depending on which one provides the lowest value for the objective

function in expression (A5).

(3) Compute the parameters α, β, γ and μ that optimize expres-

sion (A6). For initial values of α, β, γ and μ we use the values

computed in the second step and the first step.

(4) Compute the parameters α, β, γ and μ that optimize expres-

sion (A5). For initial values of the parameters to be determined we

use those obtained in the third step.

Note that intermediary steps can be added to this procedure. For

instance, in steps 3 or 4, one can use the value of α and γ found in the

second step and optimize expressions (A5) or/and (A6) to fit only

the parameters β and μ. If the computer is too slow, one can consider

replacing step 4 by this variation. (For instance, computing the step

3 with a 360 MHz Sun Ultrasparc station takes 18768 seconds of

CPU time, while it takes 2531 s with a 1 GHz G4 Titanium Apple

Powerbook and 855 seconds with a 2Ghz Dual G5 Apple Desktop.

Computing the step 4 (for the same data) takes 10 005 ss of CPU time

with a 2Ghz Dual G5 Apple Desktop.) To provide robust results, it is

better to perform the computation for different sets of initial values

of the parameters. This will also ensure (as much as possible) that

the optimization compilation is not trapped in a local minimum. For

the three last steps, we use the Mathematica algorithm NMinimize

for all the results presented in this paper, with the three methods

for global optimization: genetic programming, non-linear simplex

Table A3. Same as Table A1. The second line includes the values of the Lévy parameters used to

generate the random variables with an algorithm discussed in Chambers et al. (1976).

Fitted functions α β γ μ Minimum of the

objective function eq. (A5)

Original values 1.5 1 1 0 Does not apply

p(x; 2, β, γ , μ) (Gauss) — — 1.95 −1.17 0.281

p(x ; 1, 0, γ , μ) (Cauchy) — — 1.56 −1.32 0.35

ϕ A(k; α, γ ) 1.59 — 1.51 — Does not apply

ϕ (k; α, β, γ , μ) 1.59 1. 1.56 −0.31 0.222

p(x; α, β, γ , μ) 1.47 1. 1.60 0.22 0.204

algorithm and simulated annealing. For the first step, we either use

NMinimize or NonlinearRegress.

To assert its soundness, the procedure to compute the Lévy pa-

rameters has to be tested. Furthermore, the procedure has to be

tested under conditions that are as close as possible to the condi-

tions used to compute the Lévy parameters corresponding to the slip

distribution. For this purpose, we have generated 200 Lévy random

variables (white noise) using the algorithms discussed in Chambers

et al. (1976) and Grigoriu (1995) with different values for the pa-

rameters α, β, γ and μ. (These algorithms should be used carefully,

because depending on the seed and the number of random vari-

ables generated, convergence toward the theoretical distribution is

not automatic.) The number of random variables is chosen to match

roughly the number of events (subfaults) used in the analysis of the

slip spatial distributions: 144 (Loma Prieta), 180 (Northridge), 196

(Imperial Valley) and 280 (Hyogo ken Nanbu -Kobe). The PDF and

the characteristic function—see eq. (A7)—corresponding to these

random variables are computed. (When fitting the PDF and the char-

acteristic function of the white noise or filtered slip, we neglect that

the computed PDFs for the white noise or filtered slip are trun-

cated.) Then, the procedure discussed above is used to compute the

best-fitting values for the parameters α, β, γ and μ. Comparisons

between the best-fitting values computed at each iteration and the

original values used to generate the random variables are presented

in Tables A1 to A7—see also Fig. A2. In Tables A3 and A4, the
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Table A4. Same as Table A1. The second line includes the values of the Lévy parameters used to

generate the random variables with an algorithm discussed in Grigoriu (1995).

Fitted functions α β γ μ Minimum of the

objective function eq. (A5)

Original values 1.5 1 1 0 Does not apply

p(x; 2, β, γ , μ) (Gauss) — — 0.7 −0.73 0.384

p(x; 1, 0, γ , μ) (Cauchy) — — 0.88 −0.87 0.375

ϕ A(k; α, γ ) 1.25 — 0.73 — Does not apply

ϕ (k; α, β, γ , μ) 1.26 0.92 0.74 0.81 0.222

p(x; α, β, γ , μ) 1.25 0.67 0.74 0.45 0.19

Table A5. Same as Table A4.

Fitted functions α β γ μ Minimum of the o

bjective function eq. (A5)

Original values 1.25 0 1 0 Does not apply

p(x; 2, β, γ , μ) (Gauss) — — 1.18 −0.17 0.274

p(x; 1, 0, γ , μ) (Cauchy) — — 1.14 −0.18 0.262

ϕA(k; α, γ ) 1.45 — 1.18 — Does not apply

ϕ (k; α, β, γ , μ) 1.46 0.47 1.18 0.4 0.191

p(x; α, β, γ , μ) 1.53 0.4 1.29 0.35 0.168

values of the parameters are identical even though the algorithm

used to generate the Lévy random variables is different: the algo-

rithm of Chambers et al. (1976) for Table A3 and the algorithm

given in Grigoriu (1995) for Tables A4 to A7. These results indi-

cate the order of accuracy that can be expected for the parameters

when considering two different samples of two hundred (iid) Lévy

random variables.

Note that when comparing the minimum of the objective functions

reported in Tables A1 to A7 for a Gauss or Cauchy law to the min-

imum computed for a Lévy law, these values should be understood

as indicative of only the relative quality of the fit not a definitive

measure. A more accurate measure will require taking into account

that two parameters are needed to fit a Gauss or Cauchy law while

four are needed to fit a Lévy law. However, when comparing the fit

of the Gauss law to the fit of Lévy law, the misfits of the PDF values

located in the curve tail should be given a proper weight, because it

is for these values that the Gauss law differs significantly from the

Lévy law. (The misfits for the values located in the curve tail have a

smaller contribution to the objective functions than the misfit near

the maximum of the PDF. This is due to the fact that the PDF val-

ues near the curve maximum are larger in magnitude than the PDF

values located in the tail of the curve.) Thus, a better quantification

of the quality of the fit of the PDF tail will also require weighting

accordingly the values located in the PDF tail. Adding these refine-

ments to the analysis performed in this paper will not modify the

conclusions.

The tests done using the procedure outlined above allow us to

draw some conclusions. In general, the values for the parameters γ

and μ that, respectively, characterized the dispersion and location

Table A6. Same as Table A4.

Fitted functions α β γ μ Minimum of the

objective function eq. (A5)

Original values 0.8 0 1 0 Does not apply

p(x ; 2, β, γ , μ) (Gauss) — — 0.94 −0.13 0.597

p(x; 1, 0, γ , μ) (Cauchy) — — 0.96 −0.13 0.303

ϕ A(k; α, γ ) 0.84 — 0.99 — Does not apply

ϕ (k; α, β, γ , μ) 0.85 −0.14 1.0 0.48 0.301

p(x; α, β, γ , μ) 0.87 −0.13 0.96 0.38 0.263

of the PDF, are well estimated in term of their order of magnitude.

This conclusion holds independently of the law or method used

to estimate the parameters. For most of the studies, the procedure

provides accurate values of the parameter α as long as the values

of α are not too low. (For a set of two hundred variables, it is more

difficult to approximate the theoretical behaviour of the PDF when

α ≈ 0.7 or smaller.) Of all the four parameters, β is the parameter

estimated with the least accuracy, although the parity is usually well

resolved. Thus the asymmetry or symmetry of the PDF curves is

not well resolved for the number of random variables used in these

tests.

The question of how many random variables are needed to get

an accurate estimate of the PDF and of the PDF parameters is be-

yond the scope of this paper. What we want to establish in this Ap-

pendix, is that given a number of random variables similar to those

used in computing the stochastic model of the slip distributions and

using a similar procedure, it is possible to discriminate between

white noise distributed according to a Gaussian (α = 2), a Cauchy

(α = 1, β = 0) and a Lévy (with a stable parameter value α not too

close to 1 or 2) law. The study suggests that the parameter α can

be estimated with an uncertainty of roughly ±0.3 (see Tables A4

and A5). This precision is for white noise, that is, generated (iid)

random variables. For random noise obtained through the filtering

of the slip distributions, the uncertainty is surely larger although not

easily quantified (see the next section). These results suggest that

the uncertainty of the values of α reported in Tables 1 to 3 is at least

of the order of ±0.3. Within this margin of error, it is possible to dis-

tinguish between a Cauchy (α = 1) and a Gaussian (α = 2) random

law. For the sake of comparison, with results presented in Tables A1
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Table A7. Same as Table A4.

Fitted functions α β γ μ Minimum of the

objective function eq. (A5)

Original values 1.72 0.5 1 0 Does not apply

p(x; 2, β, γ , μ) (Gauss) — — 1.2 −0.19 0.242

p(x; 1, 0, γ , μ) (Cauchy) — — 1.18 −0.36 0.413

ϕ A(k; α, γ ) 1.65 — 1.1 — Does not apply

ϕ (k; α, β, γ , μ) 1.68 1.0 1.1 0.3 0.181

p(x; α, β, γ , μ) 1.62 0.93 1.16 0.4 0.172

Table A8. Same as Table A1 but for the random variables corresponding to the dip slip of the

Northridge earthquake.

Fitted functions α β γ μ Minimum of the

objective function eq. (A5)

p(x; 2, β, γ , μ) (Gauss) — — 96.45 –1.53 0.0321

p(x; 1, 0, γ , μ) (Cauchy) — — 9.69 −1.13 0.0229

ϕ A(k; α, γ ) 1.34 — 21.12 — Does not apply

ϕ (k; α, β, γ , μ) 1.31 −0.1 19.33 −3.57 0.0227

p(x; α, β, γ , μ) 1.34 −0.05 21.28 −2.16 0.0223

to A7, we present in Table A8 the results of the procedure outlined

above for the dip slip of the Northridge earthquake.

Finally, the computed values for the parameters of the Cauchy,

Gauss and Lévy laws depend to a certain extent on the size of the

increment 	X used to compute the PDF(X ). However, numerical

compilations of the parameters of the Cauchy, Gauss and Lévy laws

for a reasonable choice of 	X show that there is no significant

change in the parameter values. For instance, the values presented

in Table A8 are computed for 	X = 7. Using a 	X = 8 to com-

pute the PDF(X ), we obtain that the Gauss law is best fit for γ =
96.14 and μ = −1.55; the Cauchy law is best fit for γ = 10.35 and

μ = −1.72; and the Lévy law is best fit for α = 1.28, β = 0.14, γ =
18.34 and μ = 0.76. These values are in good agreement with those

reported in Table A8. That is, the results presented in Tables 1, 2 and

3, indicating that the Lévy law provides a better fit, are not an artefact

that can be eliminated by choosing another reasonable value for 	X .

By reasonable value of 	X we mean a value as small as possible—to

get as many points as possible to fit the three probability laws—but

large enough to reproduce the regular smooth shape associated to a

PDF. There is no optimal way to make such a choice for 	X , and it

may be possible to get better results by using a variable 	X . For N
random variables X i we perform the following comparison to insure

a reasonable choice of 	X . First we compute the mean directly from

the data, using (1/N )
∑N

i=1 Xi , and compare to the mean computed

with
∑N

i=1 P DF(Xi ) Xi , using the computed PDF(X ) at a given

	X . Then, we compute the moment of second order directly from

the data, using (1/N )
∑N

i=1 X 2
i , and compare with the moment of

Table A9. Summary of the values obtained for the parameters of the Cauchy, Gauss and Lévy

law for the pseudo-white noise. These results should be compared with the results obtained for the

original white noise given in Table 1.

Fitted functions α β γ μ Minimum of the

objective function in eq. (A5)

Original values 2 — 2 0 Does not apply

p(x ; 2, β, γ , μ) (Gauss) — — 1.83 0.03 0.212

p(x; 1, 0, γ , μ) (Cauchy) — — 1.39 −0.14 0.317

ϕ A(k; α, γ ) 1.99 — 1.74 — Does not apply

ϕ (k; α, β, γ , μ) 1.99 −1.0 1.74 0.07 0.207

p(x; α, β, γ , μ) 1.91 −1.0 1.66 −0.08 0.201

second order computed with
∑N

i=1 P DF(Xi ) X 2
i . The increment

	X is chosen in such a way that both comparisons give similar val-

ues for the mean and the second order moment.

A2 Pseudo-white noise

In the previous section, we discussed the computation of the parame-

ters of the Lévy law for a sequence of (iid) random numbers—white

noise. For the slip distribution, we have to filter the data to approx-

imate a white noise (see eq. 4 or 7). It should be noted here that

in addition to having a flat spectrum (for instance ν = 0 for 1-D

analysis), a second condition is necessary to insure that the filtered

slip corresponds to a white noise: the parameter of the probability

law should be invariant under translation across the filtered slip.

Due to the number of subfaults found in a source inversion, it is

hardly possible to verify—even as an approximation—the second

condition. A related issue has to do with the accuracy of the scaling

exponent computed for the slip distribution. In practice, to observe

the theoretical scaling exponent corresponding to a random walk or

fractional Brownian motion (with a Gauss or Lévy law), many sam-

ples of the stochastic model have to be generated. Spectrum analysis

is performed on every sample, and computing the average power

spectrum over all the samples usually allows recovery of the theo-

retical scaling exponent. To illustrate this issue, for each sequence

of random variables already discussed in Tables 1–3 (correspond-

ing to Gauss, Cauchy and Lévy with α = 1.5 random variables),

we distribute the random variables on ten layers with twenty events
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Table A10. Summary of the values obtained for the parameters of the Cauchy, Gauss and Lévy

law for the pseudo-white noise. These results should be compared with the results obtained for the

original white noise given in Table 2.

Fitted functions α β γ μ Minimum of the

objective function eq. (A5)

Original values 1 — 1 0 Does not apply

p(x; 2, β, γ , μ) (Gauss) — — 0.55 −.1 0.619

p(x; 1, 0, γ , μ)(Cauchy) — — 0.76 −0.15 0.338

ϕA(k; α, γ ) 1.17 — 0.71 — Does not apply

ϕ (k; α, β, γ , μ) 1.19 0.11 0.70 0.16 0.303

p(x; α, β, γ , μ) 1.13 0.12 0.67 0.26 0.281

Table A11. Summary of the values obtained for the parameters of the Cauchy, Gauss and Lévy

law for the pseudo-white noise. These results should be compared with the results obtained for the

original white noise given in Table 3.

Fitted functions α β γ μ Minimum of the

objective function eq. (A5)

Original values 1.5 1 1 0 Does not apply

p(x; 2, β, γ , μ) (Gauss) — — 1.63 −0.57 0.252

p(x; 1, 0, γ , μ) (Cauchy) — — 1.30 −0.71 0.223

ϕ A(k; α, γ ) 1.5 — 1.31 — Does not apply

ϕ (k; α, β, γ , μ) 1.48 0.96 1.30 0.52 0.116

p(x; α, β, γ , μ) 1.48 0.89 1.32 0.47 0.106
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Figure A2. (a) Using eq. (A7), the absolute value of the characteristic func-

tion |ϕ k | is computed for random variables distributed according to a Cauchy

law (see Table A2, second row). The continuous (green) curve corresponds

to the Lévy law that best fits |ϕ k | in eq. (A9). The parameters of the Lévy

laws are given in Table A2 (fifth row) (b) The (discrete) probability density

function (PDF; red and blue dots and bars) corresponding to the random

variables X discussed in (a). The curves of the three probability laws that

best fit the PDF: the Cauchy law (black curve), the Gaussian law (dashed

curve) and the Lévy law (green curve) are also shown here. The parameters

of the Gauss, Cauchy and Lévy laws are given in Table A2 (in the third,

fourth and last rows, respectively).

(or subfaults). Each layer is then filtered using eq. (2) with ν = 1.

We compute the scaling exponent to the average power spectrum as

we did for the earthquakes source models discussed in Sections 3.2.

We obtain the following values for ν: 1.09, 1.29 and 1.06 for Gauss,

Cauchy and Lévy with α = 1.5 random variables.

For each case, using the estimated ν and eq. (4), we compute a

pseudo-white noise. For each sequence of the pseudo-white noise,

we compute the parameters of the Lévy law following the procedure

outlined in the Section A1. The results are reported in Tables A9–

A11. Comparing the results in Tables A9–A10 to those in Tables A1–

A3, suggests that only the parameter γ is significantly different for

the pseudo-white noise. (We already have noted in Section 3.2 that

the value obtained for this parameter depends on the definition of

the inverse Fourier transform used in eq. 4). Note also that the error

in estimating the parameter α for the pseudo-white noise is within

±0.3 of the input values. For most of the values reported in Tables A9

to A11, the values of the parameter α is in very good agreement with

the corresponding estimates in Tables A1, A2 and A3. The good

agreement obtained for α can be understood as a consequence as of

the Central Limit Theorem (see Section 5 and Lavallée & Archuleta

2005).

Based on these computations, it is possible to obtain reliable esti-

mate of the parameters α, β and μ with a pseudo-white noise (that is,

within the qualifications discussed elsewhere in this paper). How-

ever, it should be noted that this study is not exhaustive and should

be considered as only indicative of the accuracy that can be achieved

by analysing the pseudo-white noise in place of a real white noise.
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